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A mechanistic understanding of the molecular transactions that

govern cellular function requires knowledge of the dynamic

organization of the macromolecular machines involved in these

processes. Structural biologists employ a variety of biophysical

methods to study large macromolecular complexes, but no

single technique is likely to provide a complete description of

the structure–function relationship of all the constituent

components. Since structural studies generally only provide

snapshots of these dynamic machines as they accomplish their

molecular functions, combining data from many methodologies

is crucial to our understanding of molecular function.
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Introduction
The intimate relationship between form and function

makes structural characterization of macromolecular com-

plexes a powerful tool in understanding the molecular

mechanisms that underlie biological function. Visualizing

the three-dimensional organization of a biological mol-

ecular machine not only helps us conceptualize the

assembly’s biochemical properties, but also leads to

new mechanistic models that can be further tested.

The resolution (spatial detail) and the scope (size of

the described sample) of structure–function studies

depend largely on the methodology utilized to probe

the system. While X-ray crystallography is without ques-

tion the most popular and successful technique used to

analyze molecular structure in atomic detail, the bottle-

neck of crystallization limits its general applicability.

Structure determination by NMR, on the other hand,

becomes very difficult for proteins larger than 50 kDa. As

a result, these ‘classical’ structure techniques may be able
www.sciencedirect.com 
to deal only with a subset or small facet of larger com-

plexes.

Structural studies of large macromolecular complexes

intractable by X-ray crystallography or NMR have long

been the realm of cryo-electron microscopy (cryoEM),

which is not limited by size (the bigger the better) nor

requires large amounts of sample at high concentration.

Developments in both cryoEM technology and image

processing software have led to a number of reconstruc-

tions solved to better than 4 Å resolution, allowing for ab
initio chain tracing [1–3]. However, these studies involved

exceptionally well-behaved, highly symmetric samples.

More generally, the applicability of the cryo-EM method-

ology, together with the advent of automated data acqui-

sition and more powerful computing resources, has

resulted in an exponential growth in the number of

cryoEM reconstructions at subnanometer resolutions, in-

cluding small (<0.5 MDa) asymmetric complexes [4–13].

Generally, the structures derived from any of these

methods provide only snapshots from the conformational

landscape that often characterizes macromolecular func-

tion. For this reason, the combination of multiple meth-

odologies holds vast potential in more completely

describing the dynamic rearrangements accompanying

this landscape. Within this context, hybrid methodology

provides informational value greater than the sum of

individual techniques. A generally used hybrid approach

over the past decade involves rigid-body fitting of high-

resolution structures of the constituent fragments into

cryoEM reconstructions of full complexes. Here we con-

centrate on two families of hybrid studies involving

cryoEM: those where crystallographic structures are not

available for all the components within an assembly, and

those dedicated to characterizing the dynamic nature of

macromolecular assemblies. In both cases additional

information was required beyond EM volumes and X-

ray atomic coordinates.

Going hybrid to define the subunit
architecture of large assemblies
In particularly favorable cases, atomic-resolution structures

are available for most, if not all, of the constitutive com-

ponents of the assembly being studied by cryoEM. In such

cases, subnanometer resolution EM maps not only permit

delineation of subunit and domain boundaries, but dis-

cernable secondary structure elements allow for unam-

biguous positioning of atomic structures with an

accuracy that exceeds the resolution of the reconstruction

itself. The resulting pseudo-atomic model of the entire

macromolecular complex defines the precise location of
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628 Biophysical methods
functional elements, informs on protein–protein inter-

faces, and provides unique functional information about

the complex as a whole.

Owing to less stringent experimental requirements, it is

common for low-resolution cryoEM reconstructions of

macromolecular complexes to be solved before all (or

even any) atomic-resolution structures of its assembly

components are available. In these cases, the EM density

may still provide valuable information about the arrange-

ment of proteins within the complex. Docking of the

available atomic structures into the cryoEM density can

itself shed light on the position and role of the other

portions of the complex. This is exemplified in the recent

work of Lau and Rubinstein on the Thermus thermophilus
ATP synthase [14,15��]. ATP synthases consist of a

membrane-embedded region, so far intractable by crystal-

lography, that is connected to an extramembranous cat-

alytic subcomplex by both a central stalk and one or more
Figure 1
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peripheral stalks. Lau and Rubinstein’s single particle

analysis by cryoEM revealed the subnanometer structure

of an intact ATP synthase, and docking of crystal struc-

tures provided key insights into the protein interactions

within the catalytic cytoplasmic domain, as well as how

these components are structurally coupled to the mem-

brane-embedded ring subcomplex [16–18].

Of particular importance, however, was the ability to

define the remaining elements in the structure as the

transmembrane helices of both the membrane-bound

rotary ring and subunit I, revealing their mode of inter-

action. Two distinct clusters of helices within subunit I

each interact exclusively with specific rotary subunits,

one closer to the periplasm and the other closer to the

cytoplasm (Figure 1). This organization supports a two

half-channel ion-translocating mechanism, in which one

helical bundle of subunit I channels protons from the

periplasm to the rotary subunits, while the other conducts
+

H+
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protons from the rotary subunits to the cytoplasm. The

authors propose that the movements of the rotary sub-

units are transferred to the central rotor by a funnel-

shaped connector, linking the transmembrane proton

motive force to ATP synthesis by the catalytic domains.

The 26S proteasome is a classic example of a large

macromolecular complex that has been the target of

structural studies for several decades, but whose atomic

structure remains elusive. The dynamic nature and labile

character of the 19S regulatory particle (RP), which con-

trols access to the proteolytic chamber, has significantly

hampered efforts to define its structural organization.

Atomic-resolution structures of some subunits or frag-

ments had been determined [19–21], but their relative

arrangement within the RP could not be decisively

defined, limiting our understanding of their contributions

to RP function.
Figure 2
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Two recent studies have combined cryoEM reconstruc-

tions of the 26S proteasome with biochemical data to

provide a much more complete understanding of the RP

architecture [22��,23��]. Although making use of differing

methodologies, these studies point to identical models of

molecular organization. In the study by Lasker et al.,
cross-linking/MS experiments [24] were combined with

previously determined protein–protein interactions [25–
27] and crystal structures, and placed in the context of a

subnanometer reconstruction of the 26S to arrive at a

description of the RP subunit organization [23��]. Martin

and colleagues took advantage of a heterologous expres-

sion system of the ‘lid’ subcomplex [22��], locating com-

ponents using maltose-binding protein (MBP) fusions

and negative stain EM analyses. Combined with antibody

and GST-fusion labeling of the RP ‘base’ subcomplex,

these studies directly describe the complete architecture

of the proteasome RP (Figure 2). This approach could in
t
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principle be applied to any new macromolecular complex

lacking an extensive history of proteomic studies. More

recently, and following determination of additional crys-

tal structures of RP components [28,29] daFonseca et al.
[30] have proposed a slightly modified organization for

the lid subunits within a cryo-EM reconstruction of the

human 26S.

Although crystal structures provide precise atomic

information, there are frequently unstructured or

dynamic regions that do not crystallize and are not

visualized in the structure. Such low-complexity

regions are frequent sites of post-translational  modifi-

cation and are commonly involved in regulating

protein–protein interactions. Often times these

unstructured regions become at least partially ordered

in the context of a larger assembly. High-resolution

cryoEM may allow visualization of these extended

segments and insight into their role at interfaces.

Extended segments of viral coat proteins are often

involved in viral assembly and thus can be described

by visualization of fully assembled viruses. One beau-

tiful example is that described by Harrison and co-

workers in the study of rotavirus VP7 protein [31]. The

authors more recently also visualized the rotavirus

penetration protein VP4 in infectious particles [32�],
revealing an unexpected architecture that resolved

many of the perplexing questions regarding rotavirus

penetration. Another example, albeit at lower resol-

ution, is the study of microtubules interacting with

the kinetochore complex Ndc80. The disordered N-

terminal tail of Ndc80 mediates interactions with other

Ndc80 molecules, resulting in a self-organization of the

complex into clusters along microtubules. Docking of

crystal structures revealed a prominent extra density

not accounted for by the atomic coordinates, which

extended from the N-terminus in a staggered fashion

between the globular domains of the complex [33�].
Importantly, removal or phosphorylation of this seg-

ment abrogates clustering, confirming its involvement

in the self-association of Ndc80 complexes.

Subnanometer resolutions like those in the examples

mentioned above are not always necessary for accurate

positioning of atomic structures into cryoEM density,

provided there are sufficient data from other biophysical

and biochemical studies. Recent work by Melero et al.
reveals the pseudo-atomic architecture of the UPF sur-

veillance complex, a central component of the nonsense-

mediated decay pathway, by integrating the results from

mass spectrometry, protein and nucleic acid labeling, and

biochemical interaction data, into a 16 Å-resolution

cryoEM reconstruction [34�]. The resulting model pro-

vides a structural description of how this enzyme is

stabilized at an exon junction complex, such that the

helicase region of the complex is appropriately situated to

remodel the 30 end of an mRNP.
Current Opinion in Structural Biology 2012, 22:627–635 
Localization of specific subunits in complexes purified

from endogenous sources is commonly pursued using

antibody labeling, but this approach depends on the

affinity of the antibody for the epitope in the context

of the assembled complex, and often suffers from sub-

stoichiometric labeling. When a recombinant expression

system exists for the complex, genetic tags are a signifi-

cant advantage, as demonstrated in the proteasome lid

study mentioned previously. In addition to localizing a

subunit by tagging one or both of its termini, internal tags

can allow the effective ‘tracing’ of the polypeptide path of

large subunits. A recent implementation of this idea has

been successfully utilized to effectively establish the

architecture of the functional domains in human Dicer

[35�]. By inserting the 15-amino acid AviTag sequence, a

substrate for biotin-protein ligase, into surface loops along

the structure of this enzyme, followed by biotinylation

and tagging with a monovalent form of streptavidin, the

protein was visualized by negative stain EM to localize

the position of the extra streptavidin density.

An alternative internal tagging method recently imple-

mented for EM labeling purposes takes advantage of the

fact that the N- and C-termini of green fluorescent

protein (GFP) are in close spatial proximity to one

another, such that internal GFP tags, connected by a

short loop, can be integrated at desired sites along a main

protein chain. This strategy has been used, in combi-

nation with isotopic chemical cross-linking and mass

spectrometry, to localize all subunit domains within the

gene silencing complex PRC2 and generate a detailed

map of interactions across the assembly (Claudio Ciferri,

G.C.L. and E.N., unpublished results).

Going hybrid to see large macromolecules in
action
Given that many complexes undergo dramatic rearrange-

ments in order to accomplish a molecular task, the goal of

many cryoEM studies is to derive multiple reconstructions

describing the different states along the conformational

trajectory of a given macromolecular assembly. Ideally this

is performed through biochemical selection of specific

states in order to study them individually. An example is

the study of the bacterial CASCADE complex involved in

RNA-guided immunity by Wiedenheft et al. [36��], in

which the subnanometer cryoEM structures of this nucleo-

protein complex were solved before and after binding to its

nucleic acid target. The subunit organization of the com-

plex was defined using a couple of existing structures of

homologues and the known stoichiometry within the com-

plex. Clear non-protein density was assigned to single

stranded RNA in the apo complex and to segments of

double stranded RNA in the target-bound structure. The

complex rearrangements upon target-binding occur along a

static backbone that allows for CRISPR RNA protection

while maintaining its availability for base-pairing to

target nucleic acid. The dramatic conformational change
www.sciencedirect.com
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probably functions as a molecular signal for recruitment of

an endonuclease that degrades the bound foreign oligo-

nucleotides.

Icosahedral viruses are a particularly favorable sample for

cryoEM structure determination, in some cases providing

reconstructions at high enough resolutions to allow deri-

vation of atomic models [37,38�,39–41] as reviewed in

[42]. In studying viral maturation, it is essential to first

determine the conditions that trigger key conformational

rearrangements, and then to trap particular states for

detailed characterization. The recent study by Johnson

and colleagues of Nudaurelia capensis v virus maturation

as a function of pH required, not only X-ray crystallo-

graphy and cryoEM structures [43��], but the high

throughput and time-resolved capabilities of small angle

X-ray scattering (SAXS) [44]. SAXS allows the assessment

of even subtle changes in viral organization, while

monitoring particle homogeneity. Careful control of pH

during equilibrium SAXS experiments showed three

discrete phases in virus maturation, beginning with a
Figure 3
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sharp collapse in the diameter of the virus particles, taking

place on the order of milliseconds, followed by a slow but

continuous decrease in size over 5 s, and ending with an

even slower final transition that lasts several minutes [44].

CryoEM reconstructions at subnanometer resolution

representing each of these important kinetic stages of

maturation (Figure 3) showed that the subunits of the

virus capsid undergo autocatalytic cleavage of their matu-

ration peptide at different rates, depending on their

symmetric position in the virus shell [43��]. The slower

rates of cleavage were observed at regions of the capsid

where the larger molecular rearrangements are necessary

for maturation, ensuring proper reorganization of the

capsid before solidifying the mature architecture.

As advances in cryoEM continue to improve the resolution

of maps beyond the subnanometer mark, computational

algorithms have emerged that introduce biomolecular

flexibility during the docking of a crystal structure

[45–56]. This is generally achieved through compartmen-

talization of atomic coordinates into secondary structural
aved
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elements that are treated as rigid bodies, or through mol-

ecular dynamics techniques that apply a force field to

atomic coordinates while constraining atomic movements

to the envelope offered by cryoEM electron density. Appli-

cation of these flexible fitting methods is still relatively new

to the field of cryoEM, but there are many examples where
Figure 4
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this technique has provided valuable insight into the

dynamics of a molecular assembly [57–61]. It is important

to note, however, that great care should be exercised in

performing such analyses, especially in cases where resol-

ution of the EM map is not consistent throughout. Within a

particular region of the EM reconstruction, the size of the
GroEL-ATP7

GroEL-GroES-ATP7
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ide the power stroke of chaperonin action by ejecting the non-native

mber [63��].
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structural element being docked as an independent unit

should not be smaller than the true local resolution of the

map. The movements permitted by a given fitting algor-

ithm must be limited to the local structural details present in

the map, and failure to account for poorly resolved regions of

density might result in inaccurate results. Validation criteria

for the models produced by these techniques are under

development within the molecular dynamics community,

and worldwide modeling exercises, such as the ‘cryoEM

modeling challenge’ (see editorial by Ludtke et al. [62]), will

probably play a crucial role in establishing such criteria in

addition to improving this technique.

A recent study of GroEL dynamics by Clare et al.
describes a true marriage of flexible fitting and cryoEM

reconstruction [63��]. Extensive studies have shown that

the molecular chaperone GroEL binds and encapsulates

non-native polypeptides to facilitate their proper folding.

Rapid binding of ATP induces a series of concerted

motions of the GroEL subunits that trigger binding of

GroES, potentially exerting force on the unfolded sub-

strate and culminating in its seclusion and folding inside

the newly formed hydrophilic folding chamber. Although

the crystal structures of the initial and final states have

long been known, the precise atomic trajectory of GroEL

subunit domains as they interact with and encapsulate

substrates has not been determined.

Applying extensive computational analysis to a large

cryoEM dataset of a GroEL ATPase mutant, Clare

et al. were able to determine six distinct three-dimen-

sional reconstructions representing different GroEL–
ATP states. With the reconstructed densities at subnan-

ometer resolution, flexible fitting and energy minimiz-

ation of GroEL crystal structures into the electron density

resulted in a series of pseudo-atomic models describing

the trajectory of subunit motions as GroEL binds ATP

(Figure 4). The motions can be divided into two phases,

the first involving coordinated domain tilting and

elevation that is able to maintain substrate binding, while

at the same time generating the appropriate docking site

for the GroES cap. The second phase is described as the

‘power stroke’, involving a 1008 twist of the GroEL

subunit domains that ejects the substrate from the hydro-

phobic binding patches, releasing it into the hydrophilic

folding chamber. This study perfectly exemplifies the

incredibly dynamic nature of macromolecular complexes,

and how these dynamic motions can be examined quan-

titatively and in exquisite detail by properly combining

multiple biophysical methodologies.

Conclusions
Proteomics initiatives continue to identify new molecular

ensembles involved in vital cellular functions. Defining

the architecture of these complexes has benefited tre-

mendously from the combination of cryoEM structures of

full complexes with available atomic structures of com-
www.sciencedirect.com 
ponents from X-ray crystallography and NMR studies. In

cases where few or none of the structures are available,

EM labeling schemes and additional data from bio-

chemical and biophysical approaches become indispen-

sable. As cryoEM technology continues to improve,

atomic-resolution reconstructions are likely to become

more common for even small asymmetric complexes.

However, these reconstructions will probably be of highly

rigid, stable macromolecules that, much like crystallogra-

phy, will provide only a single snapshot of the complex.

The more useful developments in cryoEM will involve

the sorting of complex heterogeneity that coexists for a

given set of biochemical parameters. We believe that it

will soon be possible to obtain as many subnanometer

reconstructions as required to describe the full confor-

mational ensemble present in a single dataset, even in the

case of small and asymmetric macromolecules. It is these

more dynamic, and therefore troublesome, complexes

that will benefit the most from a blending of cryoEM,

atomic-resolution studies and additional biochemical and

biophysical methods.
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